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Abstract

We describe numerical algorithms and paralel implementations of a time-depen-
dent, incompressible Navier-Stokes flow solver and a multigrid elliptic solver which is also
used as a computation kernel in the flow solver. The flow solver is based on a second-order
projection method (Bell et. a [2]) applied to a staggered finite-difference grid. The multigrid
elliptic solver uses the full V-cycle scheme (Briggs, [4]) and was designed to be a general-pur-
pose elliptic solver working on severa types of finite-difference grids and for different bound-
ary conditions. A domain-decomposition strategy is used in the parallel implementations for
both the flow solver and the multigrid €lliptic solver on all tine and coarse grids. The imple-
mented solvers are numerically stable and computational] y efficient, and they scale very well
to alarge number of processors on Intel Paragon and Cray T3D for problems with moderate
granularity. The solver codes are portable to parallel systems that support MPI, PVM and NX
for interprocessor communications.

1.1 ntroduction

The motivation for our work is to develop efficient and reusable parallel partia dif-
ferential equation (PDF?) solvers that are portable across distributed-memory, message-pass-
ing computers, so that these solvers can be used to solve 1 arge, comput ationall y expensive
physics and engineering problems on high-performance parallel computers. A reusable or
template PDE solver, in our view, isaPDE solver that can be adapted or expanded to solving
avariety of problems using different (component) numerical schemes as needed without a
major rewriting of the solver code. For that purpose, we chose a multigrid solver and afluid
flow solver as our testbeds since they are representative of the kinds of numerical schemes and
applications we encounter in the field of scientific computing.

The idea of projection method for solving incompressible Navier-Stokes equations
was first described in a paper by Chorin [6], which is a finite-difference method for solving the
incompressible Navier-Stokes equations in primitive variables. Bell et. al [2] [3] extended the
method to second-order accuracy in both time and space, and used a Godunov procedure com-
bined with an upwind scheme in the discretization of the convection term for improved
numerical stability. Projection method is a type of operat or-splitting met hod which separates
the solutions of velocity and pressure fields with an iterative procedure. In particular, at each
time step, the momentum equations are solved first for an intermediate velocity field without
the knowledge of a correct pressure field and therefore no incompressibi lit y condition is
enforced. The intermediate e velocit y field is then “corrected” by a projection step in which we
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solve a pressure equation and then use the computed pressure to produce a divergence-free
velocity field. Our projection step, which is based on a pressure equation derived in [1] and
makes use of the highly efficient elliptic multigrid solver we developed, is mathematically
equivaent to but different from the projection step described in [2]. In actua flow simulations,
this prediction-correction type procedure is usually repealed afew times (2 or 3 iterations
seem to be enough from our experiments) until reasonably good velocity and pressure fields
have been reached for that time step. In each time step for computing an N-dimensional (N =2
or 3) viscous flow problem using this method, we need to solve m x N 1 Ielmholtz equations
for the velocity field and . Poisson equations for the pressure field, where m is the number of
iterations done at each time step. A fast multigrid elliptic solver isthus very useful to improve
the computational performance of the flow solver. The multigrid solver package we developed
can solve N-dimensional (N< 3) elliptic problems on vertex-centered, cell-centered and stag-
gered grids, and it can deal with Dirichlet, Neumann and periodic boundary conditions.

Since the solvers are implemented on rectangular finite-difference grids, a natural
paralel implementation strategy is domain-decomposition: the global computational grid is
partitioned and distributed to alogical network of processors; message exchanges are per-
formed for grid points lying on “partition boundary-layer s* (whose thickness is vsuall y dic-
tated by the numerical schemes used) to ensure a correct implementation of the sequential
numerical algorithms on the global computational grid. In our implementation of the parallel
multigrid V-cycle and full V-cycle schemes, we apply this domain-decomposition to al coarse
grids as well. ‘I"his means on some very coarse grid, only a subset of allocated processors will
contain a least one grid point on that grid and therefore they are “active” on that grid, whereas
those processors which do not contain any grid point will be idle on that grid, The appearance
of idle processors certainly introduces some complexity for a paralel implementation. For
example, the logical processor mesh on which the origina computational grid is partitioned
can not be used for communications on those coarse grids for which idle processors appear.
Depending on the type of finite-difference grid and coarsening scheme, one may also need to
consider how to correctly apply boundary condition in “boundary processors”, which contain
at least one grid point next to the boundary of global grid, on those coarse grids, since bound-
ary processors may change from one grid to another. Domain-decomposition on all coarse
grids is certainly not the only choice. Another approach, e.g., is to duplicate some of the glo-
bal coarse gridsin every processor alocated, so that ever y processor can do things on these
coarse grids independently. The drawbacks of the latter approach include that it involves quite
some global communication and it also needs some extra storage for global coarse grids.
These requirements may severely affect the sealability of the solver when running on alarge
number of processors. It is also not obvious at what stage one should duplicate the global
coarse grid to achieve a good performance. Although it seems no approach is perfect for
implementing a parallel classical multigrid cycle [5] [8], we do believe the use of the domain-
decomposition on all grids is an appropriate approach for implementing a general-purpose
parallel multigrid solver. The degradation of parallel efficiency due to the idle processors on
some coarse grids has been discussed in many papers (e.g. [5] [8] [9]). The performance mea-
surements from our parallel implementations indicate ow multigrid Solver scales quite well on
a512-node Intel Paragon and a 256-node Cray T3D for both 2D and 31> problems with mod-
erate Sizes of local finest grid. In fact, the percentage of time spent on those coarse gridsis
insignificant compared to the total computation time. Similar observation was also made in
[8]. As shown by asimple asymptotic analysisin [7], the parallel efficiency of multigrid



schemes with the domain-decomposition approach is not qualitatively different from that of a
single grid scheme.

The rest of the paper is organized as follows: in section 2, we present numerical
agorithms for the multigrid solver and the second-order projection method for the incom-
pressible flow solver; in section 3, we discuss issues related o the parallel implementations of
the solvers; in section 4, we show both numerical and parallel performance results from the
implemented parallel solvers; section 5 gives some of our observations and conclusions.

2. The Numerical Methods

A. The Multigrid Algorithms

The multigrid schemes we used are the so-called V-cycle and full V-cycle schemes
for solving elliptic PDEs, discussed in some detail in [4] and [8]. The full V-cycle schemeisa
generalization of the V-cycle scheme which first restricts the residual vector to the coarsest
grid and then performs afew smaller V-cycle schemes on all coarse grids, followed by a com-
plete V-cycle scheme on al grids. The full V-cycle scheme often offers a better numerical effi-
ciency than the V-cycle scheme by using a much better initial guess of the solution in the final
V-cycle. The parallel efficiency for the full V-cycle scheme, however, is poorer than the V-
cycle scheme because it dots more processing on coarse grids. Following shows a pseudo-
code for the two schemes in arecursive fashion and their graphic representations.
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A typical multigrid cycle consists of three main components: relax on a given grid,
restrict the resulting residual to a coarse grid, and interpolate a correction back to afine grid.
Our multigrid solver can handle several different types of finite-difference grids commonly
used in numerical computations. Figurel shows how coar se grids are derived from fine grids
for vertex-centered, cell-centered and staggered grids. Alt bough the main stepsin aV-cycle
are the same for all these grids, restriction and interpolation operators can have different forms
on different grids. On a vertex-centered grid we use a full-weighting stencil (9-point averag-
ing on a 2D grid) to make the V-cycle scheme converge well when a point wise red-black
Gauss- Seidal (GS) smoother is used; whereas on a cell-centered grid, a nearest-neighbor sten-
cil (4-point on a2D grid) can be used with the pointwise red-black GS smoother to achieve a
good convergence rate. We also point out that, on a vertex-centered grid, the use of the near-
est-neighbor restriction stencil with the point-wise GS snioother dots not even result in con-
vergence on our test problems, but the use of a Jacobi smoother with the nearest-neighbor
restrict ion stenci 1 results in convergence but with a ower rate. The operator for transferring
from a coarse grid to a fine grid is basicaly bilinear interpolation for al grids. Since fine and
coarse grid points do not overlap on cell-centered and staggered grids, one needs to set the
values for grid points at the boundary of coarse grids before a bilinear interpolation operator
can bc applied. More details on the constructions of restriction and interpolation operators for
different types of grids can be foundin [12].
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Figure 1; Coarsening of threc types of grids: vertex-centered (top-left), cell-centered
(top-right) and staggered (bottom).
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Figure 2: Restriction stencils for interior point ¢ and boundary points @ and b.

Our multigrid solver can solve Dirichlet and Ncumann problems for the grids
depicted in figure 1. Periodic boundary condition is also implemented for a special case used
in the NS flow solver (to be discussed later). The Dirichlet and Neumann boundary conditions
are applied only to the origina (finest) grid; a homogeneous (zero) boundary condition is used




on al coarse grids since residual equations are solved there. In the case of a Neumann bound-
ary condition, where the unknowns are solved on al grid points including those on the grid
boundary, restriction stencils are not well-defined for boundary grid points. Take for example
the vertex-centered grid in figure 2, where a 9-point full weighting stencil is used for restric-
tion, This can be done naturally for the interior point c. For boundary points « and b, however,
only a subset of the neighboring points are within the grid and therefore weighting stencils on
those points still need to be defined in some way. On the other hand, it is reasonable to have
the following discrete integral condition satisfied between a pair of coarse and fine grids:

?;U,,xA” = Y u;xay o)
, )

where U;; and v;; are solutions on coarse and fine grids, and A;; and a;; are areas of grid cells
on coarse and fine grids, respectively. Restriction stencils for interior and boundary points that
satisfy equation (1) are given in figure 2.

When solving a Poisson equation with a Neumann boundary condition, the solution
is determined up to a constant. We use the following strategy to make sure the application of
multigrid cycles converges to a fixed solution: after every relaxation on each grid, we perform
anormalization step by adding a constant to the computed solution so that its value at a fixed
point (wc pick the point located at the center of the grid) is zero. Our numerical tests show this
simple step resultsin agood convergence rate for Neumann problems.

B. The Second-Order I'rgject ion Method

We now give a brief description of the second-order projection method for solving
the incompressible Navier-Stokes equations in a dimensionless form
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whereu € R" (n =2 or 3) is the velocity field, p € R is the pressure field and ke is the Rey-

nolds number. A typical problemisto find u and p satisfying (2) in adomain Q for agiven

initial velocity fieldu, in Q and a velocity boundary condition u, on d<2. The projection

method for solving equations (2) is based on the Hedge decomposition which states that any

vector field u can be uniquely decomposed into a sum of U,+ U,withV:u,=0 and

u, =V ¢ for some scalar function ¢. The projection method proceeds as a type of fractional

step method by first writing the momentum equation in (2) in an equivalent form

ou
o
where P is an orthogonal projection operator which projects a smooth function onto a diver-

gence-free subspace. Equation (3) can be viewed as the result of applying P to the momentum
equation in (2) which can be rewritten as

=P (Re'Au - (U-V) v &)

%l;_ +Vp = Re_lAu -w - Vu. (4)




‘I"he projection operation removes the pressure gradient in (4) because Vp is orthogonal to the
projection. Thus if we let the right-hand side of (4) be a vector field V,then Vp=(1-1") V.
The second-order projection method in [2] is a modification to the original projection method
proposed in [6] to achieve a second-order temporal accuracy and an improved numerical sta-
bility for the nonlinear convection. It uses the following temporal discretization on the
momentum equation at each halftime step n+ 1/2

-k n =k n
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where wc assume the velocit y #" isknown, and #* is an intermediate velocit y field that satis-
fies the same boundary condition as the physical velocity. The discretizations in (5) is second-
order accurate in time provided that the convection term can be evaluated to the same order of
accuracy at time step n+ 1/2. The superscript kin (5) indicates an iterative process is used for
computing u“ **, the velocity at next time step, aridl/)z,the pressure at halftime step
n+ 1/2: given adivergence-free field u” and the pressur e filed p™ ', we set p"* 1210= p" '
and solve (5) for #*. Since the correct ])”1/2 is not known, the computed u* is usually not
divergence-free; but u* can be used as a guess for #™*! and is used to compute a new guess
for pf*1*%. Once we have a new guess for p* 12t is used in (5) to compute =k+1 This it, -
tive procedure is repeated at each time step until p*+ /%% + p'* " @nd @t - "t In
practice, wc found 2 to 3 iterations would be enough to get a satisfactory convergence.

The convection term (u- V) uis evaluated at half time step n-+ 1/2 using only the
velocity u" and pressurd j*.0n the staggered grid shown in figure 1, the pressure p is
defined at cell centers, horizontal velocity # and vertical velocity v are defined at cell edges.
Let us denote cell (i) asthe cell whose center islocated at (i - 1/2) Ax, (j-1/2)Ayfori=1...
ltand j=1..1 (uV)uisthen evaluated at i, j - 1/2 foru component and i - 1/2, j for v com-
ponent. The discretization for u component, for example, has the form
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where u, 4 1/, 41/, &€ velocities at cell centers, «, ;and vi ; are velocities at cell corners
and all velocitics are assumed to be at time n+ 1 /2. Since 4" is the only velocity available at
the start of computation for time step n+ 1, we use Taylor expansions of second-order accu-
racy in both time and space, aswas donein [2] and [3], to find velocities at appropriate loca-
tions and time for computing the discrete convection terin. To improve numerical stability, a
Godunov-type procedure combined with an upwind scheme is used in determining velocity
values at cell centers and cell corners. To compute « velocit y at the cell center of cell (i), for
example, we first compute
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where the expansions for uR and «* are evaluated on the 1ight side of edge (i-1,j-12) and
on the left side of edge (i, j - 1/2), respectively. The choice of ']/} /3, j-1,21Sthen made by
the following upwind scheme

: 1 L
uk if 147>0, " + % >0 7
n+1/2 : s
Wiy j—1i2= 0 if ul <0, 4" >0
{u* othersize

‘I"he spatial derivativesin (6) are computed by first using a centered differencing and then
applying a slope-limiting step to avoid forming new maxima and minimain t he velocit y field.
Temporal derivatives in (6) are computed by using the momentum equation (4). Derivatives at
cell corners are computed in a similar way. More details for the constructions of these deriva-
tives are given in [2] and [3].

After evaluation of the convection term, the intermediate velocit y #* can be found by
solving the following | Ielmholtz equation for each veloci t y component:

: 1 -«
-AEH—gAIi;ﬁk =2Re (= [(u -V)u]"*'? 4 u +Au" = VpiT v ®)

We notice that the condition number of the matrix resulted from equation (8) improves as the
Reynolds number increases for afixed grid size and afixed time step, which isfortunate for
comput ing rows with large Reynolds nu mbers. For Fulas (mvmcnd) flow problems where

Re = co, u* can be updated explicitly (see equatlon (5)). Once #* iscomputed, A projection
step is performed to find the pressure p™1/24*! by solving a Poisson equation with a homoge-
ncous Neumann boundary condition

Ap = R(u" u"*?) 9

where w* isused in place of u"*' . Mathematically, equation (9) is the result of applying a
divergence operator to the momentum equations in (2). ‘I’he details for deriving the pressure
equation (9) on a staggered grid with appropriate treatments of the Dirichlet velocity bound-
ary condition isgiven in [1]. In computing a viscous flow, the multigrid elliptic solver is used
to solve both equations (8) and (9). After the pressure ficid is computed, w1 can be
found by using (5) and this completes oneiteration in the nex: time stepping u"™and p!
are then obtained at the end of the last iteration. The flow of control for our incompressible
Navier-Stokes solver is shown in figure 3.

3. Parallel 1 mplementations

A. Grid Partition and Logical Processor Mesh

The approach we adopted in parallel implementations of the multi grid elliptic solver
and the incompressible flow solver is domain-decomposition. Our objective is to develop par-
allel solversthat can partition any N-dimensional (N < 3) rectangular grids and run on any M-
dimensional (M <N) logica processor meshes. For example, figure 4 shows the partition of
a three-dimensional grid and the assignment of the partitioned subgrids to a three-dimensional
torus processor mesh. As shown in figure 4, logical processor meshesin our code are always
constructed as toroidal meshes. Toroidal meshes are useful in the construction of nested




Inifjalize multigrid SOIVersfor
(-ﬁach velocity components and
the pr

Imtla%ze inifial and boundar y
conditions for the N-S solver.
ut—a, pt -—])0

n=0,k=0

Compute right hand-side veca-s
for Helmholtz equation for v

I ~ | city components. e T
Call multigrid solver to find
the intermediate velocity field.

Compute right hand-side vector
for Poisson equation for pressure.
Call multigrid solver t? é

the pressure field, p™* )ﬁ

u""‘l - u"+ LEk+1 Com uteu"” k4 1 by Solvucgth pn+ L,k (7“])11+1,k+]
|ast equation in (2). ke k41
Pn+1 (*‘[7"+1’k+]

\

né—n+1

I”un+1,k+l _ "n+1,k| <g

ntl, k+1 _ pn+],k| <g

( n < max time stcp

and Ip

Stop

Figure 3: Flow diagram for the Navicr-Stokes solver
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Figure 4: A 3D Grid partition and mapping to a processor
mesh, Only two wrap- around connections Were
shown in the logical processor mesh.
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Figure 5: If the |eft processor mesh contains a 5x5 grid for a Neumann prob-
lem on a vertex-centered grid, then the derived coarse. processor mesh
isthe one on the right.

coarser processor meshes for the mult i grid solver and for dealing with problems with periodic
boundary conditions.

In the multigrid solver, coarse grids and coarse logical processor meshes are con-
structed automatically and recursively based on information on a given fine grid. All grid stor-
ages are allocated dynamically during the grid coarsening, process. In particular, for each
multigrid level, alocal coarse grid is derived from the local tine grid and storages are allocated
for the coarse grid. Processors which will get at least one grid point on that coarse grid will be
in an active state on that grid, otherwise they will be in an idle state on that grid. A flag is then
set in each processor for that level depending on the value of the state. A coarse processor
mesh for that coarse grid can then be established by cominunicat i ng the st aics among proces-
sorsin the fine processor mesh, This process is repeated 1 cursively until all coarse grids and
coarse processor meshes have been constructed. As an illustration, figure 5 shows a processor
mesh and its derived coarse mesh for a problem with a Neumann boundary condition. In our
multigrid solver, we put this construction process in an initialization routine which must be
called before the first time the multigrid solver itself is called. The cost of running the initial-
ization routine is relatively small when one needs to call the multigrid solver a large number
of times, as is the case for the Navier-Stokes flow solver. After executing this initialization
routine, every processor knows its “role” at each level of the multigrid cycle, and also knows
its neighboring processors on that grid level.

Figure 6: A local subgrid (white area) with
surrounding ghost points (shaded
area).

B. Interprocessor Communicat ions

To implement the mult igrid scheme and the projection method on a partitioned grid,
we need to exchange data which are close to the partition boundaries of each subgrid local to a
certain processor, Each processor contains a rectangular subgrid surrounded by some “ghost
grid points” which are duplicates of grid points contained in other processors, as shown in fig-
ure 6. The number of ghost points on each side of the subgrid depends on numerical ago-
rithms. For the multigrid elliptic solver using a standard 1.aplacian stencil, one ghost grid
point on each side is needed for the local subgrid at each level, whereas for the second-order
projection method, three ghost grid points on each side ar e needed in computing the nonlinear



convection term using Taylor series and upwind schemes. Therefore in the Navier-Stokes flow
solver, wc allocate storages for three ghost grid points for the fine local grid and one ghost
grid point for each coarse grid. For certain operations in the multigrid scheme (e.g. restriction
and interpolation) and for computing the convection term in the projection method, ghost grid
points in the diagonal neighbor are also needed, asshown in figure 7. Since processors Pi and
Pin figure 7 are not nearest neighbors, direct data exchange between them will introduce a
more complicated message-passing pattern. Fortunately, direct data exchange between Pi and
P is not necessary to get the diagonal ghost grid points. 1t can be verified that all data
exchanges that we need are of nearest neighbor types, as indicated in figure 8 for 2D prob-
lems. As can be seen in figure 8 that when data 1 ying on partition boundaries are exchanged,
the sending blocks always include ghost grid points. After data exchangesin figure 8 are per-
formed, al ghost grid points shown in figure 6 will be obtained by appropriate neighboring
processors. Each processor, therefore, only needs to know its nearest neighboring processors
on each logical processor mesh, In solving problems with periodic boundary conditions, data
exchanges are also required among processors lying on the boundary of a processor mesh, and
the same message-passing operations as shown in figure 8 can be used.

Figure 7: The data in the lower left corner
of the subgrid in processor P;
are needed by processor P, and
stored in P’s ghost grid points
at upper right corner.

Figure & Data exchanges between
neighbor | ng processors for
2D problems. The datain
black blocks in each proces-
sor are sent out., which is
stored in the blocks for
ghost grid points in the
neighbori NG processors.

The parallel efficiency of a paralel code is largely determined by the ratio of local
computations over interprocessor communicati ens. In ou r solvers, the best parallel efficiency
is achieved on the finest grid, where the communication cost could be easily dominated by a
large amount of computations, and the parallel efficiency degrades as the grid gets coarser.
One way to hide communication overhead and thus improve paralel efficiency on dl grids is
to overlap communications with computations. In several places within our solvers, we have
the following sequence of operations for each processor:

(1) Exchange data lying on partition boundaries;

(2) Perform processing on all local grid points.
‘I'0 overlap communications with computations, we can perform the following sequence of
operations for the same result:

10




(1) Initiate the data exchange for partition boundaries;

(2) Perform processing on interior grid points that do not need ghost grid points;

(3) Wait until data exchange in(1) is complete;

(4) Perform processing on the remaining grid points.
On Intel Paragon, we implemented the second set of oper ations above. i n the mult igrid Solver
and the flower solver using asynchronous message-passing calls. For one full V-cyclein the
elliptic solver, for example, the performance improvement on a 256x256 grid partitioned
among 256 processors is about 15%, and the improvement on a256* grid partitioned among
512 processors is about 22.%. Faster and asynchronous interprocessor communication can also
be achieved on Cray T3D by using its shared-memory communication model, in which direct
memory copy is used at either sending or receiving processors for data exchanges between
different processors. Somes ynchronization between sending and receiving processors, how-
ever, isneeded before or after adirect memory copy is performed to ensure the correctness of
amessage-passing. On 13D processor synchronization is provided only for agroup of proces-
sorswith afixed stride in their processor indexes, this shared-memory communication model
can be easily used for exchange of partition boundary data in the flow solver and for multigrid
elliptic solver on some fine grids in which data exchanges only occur between nearest-neigh-
bor processors on the original processor mesh.

C. Soft ware Structures

Our solvers were implemented in C because we think it is the 1 anguage that provides
adequate support for implementing advanced numerical software without incurring unreason-
abley large overhead, Since our goal is to develop reusable. and high-performance PDE solvers
which can be used either aslibrary routine or as extensible, template-type code for different
applications, we emphasize in our code design both generality and flexibility. First, we want
the solvers to be able to run on any M-dimensional rectangular processor meshes for any N-
dimensional rectangular grids with (M < N) (for multigrid processing, N is usually a power of
2). This requirement introduces some complexities in coding the multigrid solver in terms of
determining the right global indices for local grids at each grid level. Storages for all grid vari-
ables are allocated at run time. Yor the multigrid solver, storages for local coarse grids are
allocated as they are derived recursively from local fine grids. The user is given the option
either to supply the storage for variables defined on the or iginal grid or to let the solver to allo-
cate those storages. An array of pointersto an N-dimensional grid (i.c. an N-dimensional data
array) is alocated, and each of the pointers pointsto agrid in the grid hierarchy. N-dimen-
sional data array is constructed recursively from one-dimensional data arrays. This strategy of
dynamic memory alocation offers a greater flexibility in data structure manipulations and
more efficient use of mcrnory than a static memory allocation, and the user is also alleviated
from the burden of calculating storage requirements for mtrltigrid processing.

There are two major communication routines in the solvers. the communication rou-
tine for the flow solver exchanges partition boundary data only on the original grid; the com-
munication routine for the multigrid solver can exchange partition boundary data for all fine
and coarse grids, using a hierarchy of processor meshes. 1o make the code portable across dif-
ferent message-passing systems, we defined our own generic message-passing library as an
interface with our solvers. To use a new message-passing System, we only need to extend the
generic message-passing library to that system without changing any code in our solvers. Cur-
rentl y, our generic message-passing library can accommodate NX, M Pl and WM. A separate

un



data exchange routine has also been implemented for the flow solver, which uses the shared-
mcmory commu nicat ion library on Cray T3D.

Simple user interfaces to the paralel solvers have aso been constructed, The élliptic
multigrid solver can be used as a stand-alone library routine with both C and Fortran inter-
faces. After initializations of the problem to be solved and some algorithm parameters, a pre-
processing routine must be called before the first time the multigrid solver routine is called.
The preprocessing routine constructs the set of nested grids and the corresponding set of logi-
cal processor meshes. The flow solver can be used as a general-purpose incompressible fluid
flow solver on arectangular, staggered finite-difference grid for problems with Dirichlet or
periodic velocity boundary conditions. To use the multig id solver as a kernel for evaluating
velocity and pressure fields, the preprocessing routine must be called for each velocity compo-
nent and the pressure, since they are defined on different grid points on a staggered grid.
Therefore separate data structures will be constructed in t he preprocessing routine for each
velocity component and the pressure, which will be used in subsequent calls to the multigrid
solver.

4. Numerical Experiments and Parallel Performances

We now report numerical experiments made to examine the numerical properties of
the parallel solvers on a few test problems, and parallel performances in terms of speed-up and
parallel scaling of the solvers on Intel Paragon and Cray 13D systems for problems with dif-
ferent sizes and granularities.

A. The Elliptic Multigrid Solver

The multigrid elliptic solver was first tested on 1 Ielmholtz and Poisson equations
with known exact solutions. Table 1 and table 2 show the convergence rates of the mult i grid
solver from solving 2D and 3D Helmholtz equations

—-Au+u=rf

with Dirichlet boundary conditions. The runs were performed on Intel Paragon. Frrors dis-
played are the normalized maximum norm of the difference between a computed solution and
the exact solution, The tables show the number cycles needed in each case to reach the order
of discretization error (or truncation error). At each grid level, two red-black relaxations were
performed. Although the full V-cycle scheme is usually considered a lot more efficient than
the V-cycle scheme in sequential processing [4], it seems not necessary the case in terms of
total execution time cost in parallel processing. As shown in the tables, for the 2D problem,
even though the V-cycle scheme takes three more cycles to reach the same order of error than
the full V-cycle scheme, the CPU t i me for both schemes are about the same for that test prob-
lem; but for the 3D test case in table 2, the full V-cycle scheme is till a little more efficient.
With a domain decomposition of both fine and coarse grids, parallel efficiency degrades as the
processing moves to coarser grids. Since the full V-cycle scheme dots more processing on
coarse grids, its parallel efficiency is worse than the V-cycle scheme. For alarge computa-
tional grid with many levels of coarse grids, the higher numerical efficiency of the full V-cycle
scheme may not improve overall computational performance due to its worse parallel effi-
ciency, asisthe case for the 2D case in table 1. For appreciating the effectiveness of the multi-
grid scheme which has a rate of convergence independent of grid sizes, the errors after a large
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number of red-black relaxations on the finest grid are also shown in the last rows of the tables.
Although not shown in the paper, the convergence rates of the multigrid solver were also mea-
sured for cell-centered grid and staggered grid. We found for the same model problem the
convergence speeds are slightly slower on those grids, which could be duc to the usc of differ-
ent restrict ion operators.

Table 1. Numerical Convergence: 21) Helmholtz. Solver

Scheme Grid size Error # Processors # Cycles CPU sec.
Tull V-cycle | 20487 3.0% 107 64 3 14.7
V-cycle 2048 3.5% 107 64 6 14.5
Single grid | 2048? 07x107 | o4 400 R-B 124.7

sweeps
‘I’able 2: Numerical Convergence: 3D Helimholtz Solver

Scheme Grid Error # Processors ' # Cycl c—sw CPU sec.
Full V-cycle 256 12%x 107 64 4 713
V-cycle 256° 26%10° | 64 8 86.7
Single grid 256° 83x 107" 64 400 R-B 652.1

SWECPS

The parallel performance of an application code. is usually judged by two measure-
ments: speed-up and scaling, Speed-up is measured by fixing the problem size (or grid sizein
our case) and increasing the number of processors used. Scaling is measured by fixing the
local problem Size in each processor and increasing the number of processors used. Although
a nice speed-up can be obtained for many applications with a small number of processors, the
reductions in CPU time often become very small when alarge number of processorsis used.
This phenomenon islargely inevitable, as stated in Amdahl’ s law, because as the number of
processors used increases for a certain fixed problem size, the communication cost (e.g. the
latency for message-passing) and the cost for global operations will eventually become domi-
nant over local computation crest after a certain stage, which makes the influence of a further
reduction in local computations very small on the overall cost of running the application. On
the other hand, scaling performance of an application seems to be a more realistic measure of
its parallel performance, since a code with agood parallel scaling implies, given enough num-
ber of processors, it can solve avery large problem in about the same time asiit requires for
solving asmall problem, which isindeed one of the main reasons to use a parallel machine.
Figure 9 displays two sped-up plots for a multigrid V-cycle and a full V-cycle for solving 2D
and 3D Helmholtz equations wit h a Dirichlet boundary condition on a vertex-centered grid,
measured on Intel Paragon and Cray T3D systems. For a comparison, an ideal speed-up curve
for one test case is aso shown. The code was compiled with the -02 switch on both machines.
The grid size for the 2D problem is 512 x 512, and the g id size for the 3D problem is
64x 64x 64. The maximum number of processors used for the 2D problem is 256 on both
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machines. Yor the 3D problem, all 256 processors were used on the 13D (in which case a rect-

angular processor mesh of dimensions 4x8x8 was used) and 512 processors were used on the
Paragon.

[ Figure 9 to be placed here, seeit at the end of text ]

In terms of single processor performance, we found for our multigrid solver that
Cray T3D is about 4 times faster than Intel Paragon, 13ut since the implementation of PVM on
13D, which we used in our code for message-passing, is relatively slow for interprocessor
communication, the performance difference for a parallel application on both machines tends
to become smaller as granularity of the problem gets finer. We can sec for both 2D and 3D
problems that the V-cycle scheme has a slightly better spced-up performance than the full v-
cycle scheme, which is expected since the full V-cycle scheme does more processing on
coarse grids. For the 2D problem, speed-up started to degrade when more than 16 processors
were used, and for the 3D problem, the degradation started when more than 8 processors were
used, Despite the degradation in speed-up, we can still sec somereducti on in CPU time when
the largest number of processors was used in each case.

[ Figure 10 be placed here, see it at the end of text ]
[ Figure 11 be placed here, see it at the end of text |

Figure 10 shows the scalings of the parallel multigrid solver on Intel Paragon for
problems with three different granularities, using up to 5 J 2 processors. Figure 11 shows the
scalings of the same problems on Cray T3D, using up to 256 processors. Shown in the plots
aretheratio of CPU times of using » processors versus using one processor. On each of the
scaling curves, we fix the local grid size and increase the number of processors, so a flat curve
means a perfect scaling. Since alarger global grid has more coarse grid levels for acomplete
V-cycle or full V-cycle, cost for processing on coarse grids aso rises as the number of proces-
sors increases, and therefore it has a negative effect on the scaling performance. Like speed-up
performance, scaling performance is aso largely determi hed by the ratio of local computation
cost versus communication cost. This ratio can be dependent on both numerical/parallel a go-
rithms and hard ware/software performances on each specific machine. We can see from all the
plotsin figure 10 and 11 that scaling performance improves as the size of local grid increases.
Thisimprovement is expected for an iterative scheme on a single grid, since the computation
cost scalesas O (n) , where n is the number of grid pointsin the local grid, whereas the com-
munication cost scales as O (n“2. For amultigrid scheme, it can still be shown that both
computation cost and communication cost scale with the same orders as on asingle grid [7].
In addition, message-passing latency does not increase as proportionally since the number of
messages communicated is still roughly the same for a larger locat grid (not exactly the same
because more coarse levels are involved) though the size of each message is larger. We can
also see V-cycle scheme scales somewhat better than-full V-cycle scheme, which is expected
since the latter does more operations on coarse grids. The. scaling plots also show 2D test
cases scales better than 3D test cases, which we think is due to the fact that 3D grids have a
higher surface to volume ratio than the 2D grids and thus the ratio of computations to commu-
nicationsis smaller for 3D cases. As for a comparison between Intel Paragon and Cray T3D,
our results show that the scalings on Paragon are slightly better than on 13D. This could be
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explai ned by the fact that single processor speed on T3D is much faster than on Paragon,
whereas the speed of interprocessor communication on 13D is not proportionally faster when
PVM isused for communication.

B. The Incompressible Navier-Stokes Solver

The parallel Navier-Stokes solver wasfirst tried out on atest problem with the fol-
lowing exact solution

u = —cos (X) sin(y) ¢ 21 Re v = sin (X) COS (y) ,~21/Re
‘ , : (lo)
%’; = %sin (2x) e~/ Re %[; = %sin (2y) eV Re

The purpose of the testis to examine the convergence rate of the flow solver, The computation
was performed in the unit square O < x,y < 1with initial and (time dependent) boundary con-
ditions specified by the given solution, For numerical stability of the Godunov scheme used in
discretizing the convection term, the time step, At, isrestricted by the CFI. condition

At v

A_x max
where Ax isthe size of grid cellsand U, isthe maximum value in the current velocity field.
In using multigrid solver for solving velocity and pressure equations, we perform 4 full v-
cyclesin each call to the elliptic solver. On a 64x64 grid, we found 4 full VV-cycles can reduce
the residual error to the order of 107!° for the test problem whose solution norm is one, which
we think is good enough for our purpose. Table 3 showsthe convergence rate of the computed
velocit y field to the exact velocity field using three Reynolds numbers. ‘1 he velocit y was com-
puted to time= 3.12, which is about 400 time stepson a 64x64 grid, The error in table 3 was
measured by

< 0.5, (11)

e = " u ew) = “

v -V
exact (foml)“nmx

ok
Ewan = max e uy,em)) Rate = logz{_ffh(y)__, )

Ic‘(u)k+ ]"J

~u
exact comp”,,mx

where E (u) ¥is the error measured on a grid of size 2" x 2%, A second-order rate of conver-
gence can be seen from the data in table 3. The rate improves dightly as the grid become finer,
possibly due to better accuracy on finer grids. The rate also drops dlightly as the Reynolds
nu mber increases, which could be a result of more mr me: ical noise introduced a higher Rey-
nolds number calculations.

Our next numerical experiment on the flow solver is to simulate an evolving 2D
driven-cavity flow. The computational domain is still in a unit box 0< x,y < 1. The no-dlip
velocity boundary condition is applied to al boundaries except at the top boundary, where the
velocity value is given, We first test the solver on the problem in which the velocity initia
condition is specified by ¥ = O inside the domain, and the velocity at the top boundary is
aways one. Figure 12 displays the velocity vector fields which show three stages for time=
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0.16, 3.91and 15.63 in the evolution of the flow, computed on a 256x 256 grid with the Rey-
nolds number = 5000. The CF1. number (i.e. the right hand-side of ( 10)) used in the calcula-
tionis 0.4, and atotal of 10,000 time steps was computed to reach the last state at time =
15.63. Figure 13 shows the vorticity structures at time= 3.91 and 15.63. We found the vortic-
ity structure at time = 15.63 is similar to those obtained by solving the stcady incompressible
Navier-Stokes equations (e.g. [10]). In running the parallel solver on Cray 13D, the global
staggered grid was partitioned and distributed to an 8 x 8 logically rectangular processor
mesh, In computing the velocit y vector field, velocity cor nponents defined on cell edges were
averaged to the center of cells. For better visibilit y, the vector fields shown in figure 12 are
actually 32 x 32 data arrays which were obtained by averaging the 256 x 256 velocity vectors
from the simulation. Vorticit y fields were computed at ccl 1 corners by central differencing.
The velocity vector plots in figure 12 show clearly how t he cavit y flow develops from its ini-
tia state to the final Steady state which is characterized by a primary vortex in the center of the
unit box and two secondary vortices at the two bottom corners and a small vortex at the upper
left corner (e.g. [10]). We aso noticed, when reaching the final stage in figure 12, that the
change of numerica divergence of the computed velocity field before and after projection is
very small. This is because, when the steady state is reached, the intermediate velocit y field
would be computed using the correct pressure field to result in a correct velocity field. Even
though the initial condition iS not continuous along the top boundary and the boundary condi -
tionis not continuous at the two upper corners of the unit box, the numerical computation of
the flow solver turns out to be quite stable.

Table 3: Second-onkY convergence rate for several Reynolds numbers

Re 64x64 Rate 1282 Rate 2562 Rate 512°

1000 4.628 1.961 1.195 1.982 3.010 |2.035 | 7568
-5 E-5 E-6 E-7

3000 2.253 1.879 6.120 1.952 1583 | 1.99 3.964
E-5 E-6 E-6 E-7

5000 1.478 1.824 4.181 1.845 1.087 | 1870 2.970
E-S E-6 E-6 E-7

[ Figure 12 to be placed here, seeit at the end of text |
[ Figure 13 to be placed here, Seeit at the end of text ]

The flow solver was next tried on a driven-cavity flow problem with some smooth
initial and boundary conditions. The top boundary now n wves with aslip velocity «, (x) =
16X2 ( X?) and the initial velocity field is specified through a stream function v, (X, Y) =
-y, (X?~I The velocity is then computed by ¥ =~y and v =Y’ .In this case, wc
wanted to test the numerical stability of the flow solver on pro oblems W|th)iarge Reynol ds
numbers which will result in avery thin boundary layer at the top boundary. Figure 14 dis-
plays a velocity vector field and a vorticit y contour from a calculation with Re =107, at time
=4.69 for atotal of 3000 time steps using a 256 x 256 grid. Figure 15 displays the result from
acadculation with Re =1 0¢ for atotal of 7000 time steps on a512 x 512 grid. These computa -
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tions were performed on Cray T3D using 64 processors, We noticed the computations of our
solver at these Reynolds numbers seem still numerically stable, which we can judge by check-
ing the convergence rate of the pressure equation and the numerical d ivergence of the com-
puted velocity. The computed flow structures at these Reynolds numbers, however, are quite
different from that obtained from the computed flow with Re = 5000. First, at these high Rey-
nolds numbers, the computed flows did not show any sigu of approaching a steady state after
computing the large numbers of time steps; while with Re = 5000, for the same initial and
boundary conditions, wc found a steady state can be reached after computing a smaller num-
ber of time steps. Secondly, we can see some interesting flow patterns which do not exist in
the flow with Re = 5000. As shown by the vorticity contours in figure 14 and 15, the vorticit y
structures in these high Reynolds number flows are much more complicated. We can see a
large amount of vortices are generated from the top boundary and then being flushed down
along the right wall. Once these vortices reach the neighborhood of the lower right corner,
they are pushed toward the interior of the box. We found the vorticit y plot in figure 16 iSsim-
ilar to what reported in [11] where a different a gorithm was used on the same problem.

[ Figure 14 to be placed here, See it at the end of text |
[ Figure 1S 10 be placed here, see it at the end of text ]

The second problem we tested on our flow solver isan inviscid fluid flow for which
the Lular equations are solved. The computational domaiil is again restricted to a unit box, and
aperiodicity of one is assumed in both horizontal and vei tical directions. The initial velocity
field is given by

_ tanh (y - 0.25)/p for y =05
“= {tanh (0.75-y) /p  for y>05 (12)
V = dsin (2mx)

where p = 0.03 and & = 0.05. Thustheinitia flow field consists of ajet which isahorizon-
tal shear layer of finite thickness, perturbed by a smal amplitude of vertical velocity. Since the
viscous term is dropped, the velocity can be updated explicitly and the nltigrid elliptic solver
is only used for solving the pressure equation (9). On the staggered grid we used, the pressure
field is defined on a cell-centered grid whose linear dimension, say N, is preferably taken as a
power of 2 for the convenience of applying grid coarsening. Thus there are N* unknowns for
the pressure. Since velocity field is only related to the pressure gradient in the momentum
equations, it makes sense to have the velocity definedonan (N -1) x (N -1) grid, as
shown in figure 16.

Pl Pl PP Figure 16: An example of a staggered grid used
S R for computing the doubly periodic

8 ¥ E,) H E,) - P shear flow with N = 4. Unknowns for
pllpluppp velocit y and pressuic in the grid are

v \ A shown.

Ppplup|lp

Therefore there are (N- 1)2 unknowns for each velocity component. Since the velocity is peri-
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odic, a periodic domain should have a dimension of (N-1)x (N—-1) . Since the pressure
gradient isafunction of velocit y, it must have the same dimension of periodicity. Thus the
physical boundary condition for the pressure equation (9) in the horizontal direction, for
example, can be specified as

— . . o— . = D> . .- .
PO,j P1]+ PN—Z,] PN_]’] PN+1,j ]N,j+])?j PU.

In amultigrid solution of the pressure equation, the boundary condition (13) is clearly for use
on the original, finest grid. The use of condition (13) on any coarse grid, however, is incorrect
(our numerical experiments indicate the use of(13) on coarse grids will blowup the computa-
tion quickly). Since the unknown vector on a coarse grid is the difference of an exact solution
and an approximate solution on the fine grid restricted to that coarse grid, it can be regarded as
an approximation to the derivative of the solution on the fine grid. Since a derivative of the
pressure field of any order is still periodic with the same period as the velocity field, a reason-
able boundary condition for pressure on coarse grids is

13)

Po = PuPyyy = P (14)

Although condition (14) imposes a period which is one giid cell (of the finest grid) larger than
the velocity period, wc found it is easy to apply it to all the coarse grids, and our numerical
results show it works well.

Figure 17 shows vorticity contours of two early st ates of the inviscid periodic shear
flow. Figurel 8 and 19 show vorticity contours of the flow at time= 1.25 and 2.50, computed
froma 128 x 128 grid and a 256 x 256 grid, respectively. The Cl 1. number used in the com-
putationsis still 0.4. On the 256x 256 grid, atotal of 1600 time steps were computed to reach
time = 2.50. These vorticit y plots show how the shear layers, which form t he boundaries of the
jet, evolve into a periodic array of vortices, with the shear layer between the rolls stretched
and thinned by the large straining field there. A comparison between figure 18 and 19 aso
shows a better resolution of the vorticit y structure was obtained on the 256x 256 grid.

[ Figurel? tobe placed here, see it at the end of text |
[ Figure 18 to be placed here, see it at the end of text ]
[ Figurel9 to be placed here, see it at the end of text |

The paralel performances of the incompressible flow solver were also evauated in
terms of speed-up and scalability y. In each of the paralel performance measurement, we ran
the flow solver on the driven-cavity problem for one time step, excluding any initialization
and assignment of initial and boundary conditions. Figure 20 shows the speed-up curves of the
flow solver on Intel Paragon and Cray T3D systems for three different problem sizes (ideal
speed -up curves arc shown again for comparison). The sped-up performance improves as the
problem size increases, as expected, For the 512.x512 grid, no significant reduction in execu-
tion time could be obtained after more than 64 processors were used. By running the flow
solver on asingle processor, we found 13D is about five times faster than the Paragon for the
code compiled with the -02 switch. But on 256 processors, T3D runs only about 1.5-2.0
times faster than Paragon depending on problem sizes, because, as shown in figure 20, the
speed-up performance of the flow solver on Paragon is better than on 13D. Figure 21 shows
scaling performances of the parallel flow solver on T3D and Paragon for three local problem
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sizes. Again, we seethe scaling improves as the size of local grid increases on both machines.
In measuring the scalings of the flow solver, we used smaller local problem sizes than we did
for the multigrid elliptic solver (see figure 10 and 11). We expect the flow solver to have better
scalings than the multigrid elliptic solver because the flow solver, even though calling the
elliptic solver several times at each time step, does substantially additional processing on the
finest grid, Indeed, this scaling difference between the two solvers can be verified by looking
at the scaling curves for the 64 x 64 local grid for the tlow solver in figure 21 and for the mul-

tigrid full V-cycle (which is used in the flow solver) in figure 10 and 11. In view of the scaling
performances in figure 21, we would claim that our parallel flow solver scaes quite well on
large numbers of processors as long as the local grid size is not smaller than 64x 64.

[ Figure 20 to be placed here, see it at the end 01 text |
[ Figure 21 to be placed here, see it at the end of text ]

5.conclusions’

In this paper we presented multigrid Schemes for solving ellipt ic PDEs and a second-
order finite-difference projection method for solving the Navier-Stokes equations for incom-
pressible fluid flows. Our parallel implementation strategies based on domain-decomposition
arc discussed for implementing these algorithms on distri buted-memory, massivel y parallel
computer systems. Our treatment of various boundary coriditions in implementing these paral-
lel solversare also discussed. We designed and implemented these solversin ahighly modular
approach so that they can be used either as stand-alone solvers or as expandable template
codes which can be used in different applications. Several message-passing protocols (MPI,
PVM and Intel NX) have been coded into the solvers so that they arc portable to systems that
supporl one of these interfaces for interprocessor communications.

Numerical experiments and parallel performance measurements were made on the
implement ed solvers to check their numerical properties and parallel efti ciency. Our numeri -
cal results show the parallel solvers converge with the order of numerical schemes on afew
test problems. Our numerical experiments also show the flow solver is stable and robust on
viscous flows with large Reynolds numbers as well as on an inviscid flow. Our parallel effi-
ciency tests on Intel Paragon and Cray T3D systems show that good scalability on alarge
number of processors can be achieved for both the multigrid elliptic solver and the flow solver
aslong as the granularit y of the parallel application is not too small, which wc think is typical
for applications running on distributed-memory, MIMD machines. For future work, we plan
to extend the flow solver to 3D problems and explore afinite-elementsimplementation of the
projection method for solving problems in unstructured domains.
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Figure 11: Scaling of the multigrid solver on Cray 13D.
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Figure 12: Velocity vector plots from

computing an unsteady
driven-cavity flow with Re =
5000. ‘I"he simulation was
done on a 256 x 25¢ grid,
using 64 processors on T3D.
Shown are plots at time=
0.16 (top left), 4.69 (top right)
and 15.63 (bottom). A steady
state Of the flow can be very
dowly reached.



Figure 13: Vorticity contour plots from a driven-cavity flow with Re = 5000, at time =

O N O Ul B W W e

3.91 (top) and time = 15.63 (bottom). Grid size= 256x 256.
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rigure 14: Vel OCity vector field (top) and vorticity contour plot (bottom) from the
driven-cavity flow with Re = 10%, at time = 4.69. Grid Size = 256x 256.
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Figure 17: Vorticity contour plots from the periodic shear fiow at time= 0.0 (left) and
0.62 (right). Grid size = 128 X 128.
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Figure 18: Vorticit y contour plots from the periodic shear flow for time= 1.25 (left)
and time = 2.50 (right). Grid size= 128 x 128.

Figure 19: Vorticity contour plots from the periodic shear flow for time= 1.25 (left) and
time =2.50 (right). Grid size = 256x 256.
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Speed-up on Intel Paragon Speed-up on Cray T3D
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Figure 20: Speed-up performances of the paral lel Navier-Stokes solver.
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Figure 21: Scaling Performances of the parallel Navier-Stokes solver.
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